2. Basic Operations with Complex Numbers
by M. Bourne
Addition and subtraction of complex numbers works in a similar way to that of adding and subtracting surds. See also Simplest Radical Form. This is not surprising, since the imaginary number j is defined as `j=sqrt(-1)`.
Addition of Complex Numbers
Add real parts, add imaginary parts.
Subtraction of Complex Numbers
Subtract real parts, subtract imaginary parts.
Example 1- Addition & Subtraction
a. `(6 + 7j) + (3 − 5j) =`
`(6 + 3) + (7 − 5)j = 9 + 2j`
b. `(12 + 6j) − (4 + 5j) =`
`(12 − 4) + (6 − 5)j = 8 + j`
Multiplication of Complex Numbers
Expand brackets as usual, but care with `j^2`!
Example 2 - Multiplication
Multiply the following.
a. `5(2 + 7j)`
Answer
`5(2 + 7j) = 10 + 35j`
b. `(6 − j)(5j)`
Answer
`(6 − j)(5j)`
`= 30j − 5j^2`
`= 30j − 5(−1) ``= 5 + 30j`
c. `(2 − j)(3 + j)`
Answer
`(2 − j)(3 + j)`
`= 6 − 3j + 2j − j^2`
`= 6 − j − (−1)`
`= 6 − j + 1 `
`= 7 − j`
d. `(5 + 3j)^2`
Answer
We apply the algebraic expansion `(a+b)^2 = a^2 + 2ab + b^2` as follows:
`(5 + 3j)^2 = 25 + 2(5)(3)j + 9(j^2)`
`= 25 + 30j + 9(-1)`
`= 25 + 30j - 9`
`= 16 + 30j`
e. `(2sqrt(-9)-3)(3sqrt(-16)-1)`
Answer
`(2sqrt(-9)-3)(3sqrt(-16)-1)`
`=(2j(3)-3)(3j(4)-1)`
`=(6j-3)(12j-1)`
`=72(j^2)-36j-6j+3`
`=-69-42j`
f. `(3 + 2j)(3 − 2j)`
Answer
`(3 + 2j)(3 − 2j) `
`= (3)^2 − (2j)^2`
`= 9 − 4j^2`
`= 9 + 4`
`= 13`
Multiplying by the conjugate
Example 2(f) is a special case.
`3 + 2j` is the conjugate of `3 − 2j`.
In general:
`x + yj` is the conjugate of `x − yj`
and
`x − yj` is the conjugate of `x + yj`.
Notice that when we multiply conjugates, our final answer is real only (it does not contain any imaginary terms.
We use the idea of conjugate when dividing complex numbers.
Division of Complex Numbers
Earlier, we learned how to rationalise the denominator of an expression like:
`5/(3-sqrt2)`
To simplify the expression, we multiplied numerator and denominator by the conjugate of the denominator, `3 + sqrt2` as follows:
`5/(3-sqrt2)xx(3+sqrt2)/(3+sqrt2)`
`=(15+5sqrt2)/(9-2)`
`=(15+5sqrt2)/7`
We did this so that we would be left with no radical (square root) in the denominator.
Dividing by a complex number is a similar process to the above - we multiply top and bottom of the fraction by the conjugate of the bottom.
Example 3 - Division
a. Express
`(3-j)/(4-2j)`
in the form x + yj.
Answer
The conjugate of `4 − 2j` is `4 + 2j`. We multiply the top and bottom of the fraction by this conjugate.
`(3-j)/(4-2j) xx (4+2j)/(4+2j)`
`=(12+6j-4j-2j^2)/(16-4j^2)`
`=(12+2+6j-4j)/(16+4)`
`=(14+2j)/20`
`=(7+j)/10`
b. Simplify:
`(1-sqrt(-4))/(2+9j)`
Answer
We multiply the top and bottom of the fraction by the conjugate of the bottom (denominator).
`(1-sqrt(-4))/(2+9j)`
` =(1-2j)/(2+9j) xx (2-9j)/(2-9j)`
`=(2-9j-4j+18j^2)/(4-81j^2)`
`=(-16-13j)/(4+81)`
`=(-16-13j)/85`
Exercises
1. Express in the form a + bj:
`(4+sqrt(-16))+(3-sqrt(-81))`
Answer
`(4+sqrt(-16))+(3-sqrt(-81))`
`=(4+4j)+(3-9j)`
`=7-5j`
2. Express in the form a + bj.
`sqrt(-4)/(2+sqrt(-9))`
Answer
We multiply the top and bottom of the fraction by the conjugate of the bottom (denominator).
`(2j)/(2+3j) xx (2-3j)/(2-3j)`
` = (4j-6j^2)/(4+9)`
`=(6+4j)/13`