Show (1-sinx)/(1+sinx)= (tanx-secx)^2 [Solved!]
Alexandra 03 Jan 2016, 05:45
My question
How to show `(1-sinx)/(1+sinx)= (tanx-secx)^2`?
Relevant page
1. Trigonometric Identities
What I've done so far
The RHS looks like:
`(tanx-secx)^2`
`=tan^2x - 2tanxsecx + sec^2x`
But I'm stuck again
X
How to show `(1-sinx)/(1+sinx)= (tanx-secx)^2`?
Relevant page
<a href="/analytic-trigonometry/1-trigonometric-identities.php">1. Trigonometric Identities</a>
What I've done so far
The RHS looks like:
`(tanx-secx)^2`
`=tan^2x - 2tanxsecx + sec^2x`
But I'm stuck again
Re: Show (1-sinx)/(1+sinx)= (tanx-secx)^2
Murray 04 Jan 2016, 08:22
Remember the hint from before? Get everything in terms of sin and cos.
It makes it easier to recognize things!
X
Remember the hint from before? Get everything in terms of sin and cos.
It makes it easier to recognize things!
Re: Show (1-sinx)/(1+sinx)= (tanx-secx)^2
Alexandra 04 Jan 2016, 19:47
`tan^2x - 2tanxsecx + sec^2x`
`=(sin^2x)/(cos^2x) - 2(sinx)/(cosx)+1/cos^2x`
It didn't seem to help
X
`tan^2x - 2tanxsecx + sec^2x`
`=(sin^2x)/(cos^2x) - 2(sinx)/(cosx)+1/cos^2x`
It didn't seem to help
Re: Show (1-sinx)/(1+sinx)= (tanx-secx)^2
Murray 05 Jan 2016, 04:16
Have a look at the middle term. You are missing something...
X
Have a look at the middle term. You are missing something...
Re: Show (1-sinx)/(1+sinx)= (tanx-secx)^2
Alexandra 05 Jan 2016, 23:54
First, I would like to thank you for the help you are providing me.
Oops.
`=(sin^2x)/(cos^2x) - 2(sinx)/(cosx) 1/cosx+1/cos^2x`
`=(sin^2x - 2sinx + 1)/cos^2x`
I guess LHS uses the same trick as before
`LHS = (1-sinx)/(1+sinx)xx (1-sinx)/(1-sinx)`
`=(1 - 2sinx + sin^2x)/(1-sin^2x)`
`=(1 - 2sinx + sin^2x)/cos^2x`
`=RHS`
Thanks a lot!
X
First, I would like to thank you for the help you are providing me.
Oops.
`=(sin^2x)/(cos^2x) - 2(sinx)/(cosx) 1/cosx+1/cos^2x`
`=(sin^2x - 2sinx + 1)/cos^2x`
I guess LHS uses the same trick as before
`LHS = (1-sinx)/(1+sinx)xx (1-sinx)/(1-sinx)`
`=(1 - 2sinx + sin^2x)/(1-sin^2x)`
`=(1 - 2sinx + sin^2x)/cos^2x`
`=RHS`
Thanks a lot!
You need to be logged in to reply.