Skip to main content
Search IntMath
Close

Sum and product of the roots of a quadratic equation

We learned on the previous page (The Quadratic Formula), in general there are two roots for any quadratic equation `ax^2+ bx + c = 0`. Let's denote those roots `alpha` and `beta`, as follows:

`alpha=(-b+sqrt(b^2-4ac))/(2a)` and

`beta=(-b-sqrt(b^2-4ac))/(2a)`

Sum of the roots α and β

We can add `alpha` and `beta` as follows:

`alpha + beta =(-b+sqrt(b^2-4ac))/(2a)+(-b-sqrt(b^2-4ac))/(2a)`

` =(-2b+0)/(2a)`

` =-b/a`

Product of the roots α and β

We can multiply `alpha` and `beta` as follows. First, recall that in general,

`(X+Y)(X-Y) = X^2 - Y^2` and

`(sqrt(X))^2 = X`

We make use of these to obtain:

`alpha xx beta = (-b+sqrt(b^2-4ac))/(2a) xx (-b-sqrt(b^2-4ac))/(2a)`

` =((-b)^2 - (sqrt(b^2-4ac))^2)/(2a)^2`

` =(b^2 - (b^2 - 4ac) )/(4a^2)`

` =(4ac)/(4a^2)`

` =c/a`

Summary

The sum of the roots `alpha` and `beta` of a quadratic equation are:

`alpha + beta = -b/a`

The product of the roots `alpha` and `beta` is given by:

`alpha beta = c/a`

It's also important to realize that if `alpha` and `beta` are roots, then:

`(x-alpha)(x-beta)=0`

We can expand the left side of the above equation to give us the following form for the quadratic formula:

`x^2 - (alpha+beta)x + alpha beta = 0`

Let's use these results to solve a few problems.

Example 1

The quadratic equation `2x^2- 7x - 5 = 0` has roots `alpha` and `beta`. Find:

(a) `alpha + beta`

(b) `alpha beta

(c) `alpha^2 + beta^2`

(d) `1/alpha + 1/beta`

Answer

For the expression `2x^2- 7x - 5`, we have:

`a=2`

`b=-7`

`c=-5`

(a) We learned just now that `alpha + beta = -b/a` so in this example,

`alpha + beta = -((-7))/2 = 3.5`

(b) We know `alpha beta = c/a` so in this example,

`alpha beta = (-5)/2 = -2.5`

(c) For `alpha^2 + beta^2`, we need to recall that

`(alpha + beta)^2 = alpha^2 + 2alpha beta + beta^2.`

Solving this for `alpha^2 + beta^2` gives us:

`alpha^2 + beta^2 = (alpha + beta)^2 - 2alpha beta`.

We've already found the sum and product of `alpha` and `beta`, so we can substitute as follows:

`alpha^2 + beta^2 = (3.5)^2 - 2xx(-2.5) = 17.25`.

(d) We add our fractions `1/alpha + 1/beta` as follows:

`1/alpha + 1/beta = (beta + alpha)/(alpha beta) = (alpha + beta)/(alpha beta)`

We know the sum (top) and product (bottom), so we can simply write:

`1/alpha + 1/beta = (alpha + beta)/(alpha beta) = 3.5/(-2.5) = -1.4`

Example 2

Find the quadratic equation with roots α and β given αβ = 2 and α2β2 = 3.

Answer

We'll set up a system of two equations in two unknowns to find `alpha` and `beta`.

Remembering the difference of squares formula, we have

α2β2 = (α + β)(α β)

From the question we know α2β2 = 3, so this gives us:

3 = (α + β)(α β)

The question says αβ = 2, which we can substitute into the right hand side, giving:

3 = 2(α + β)

This gives:

`(alpha + beta) = 3/2`

Using αβ = 2 again, we add it to the above line, giving:

`2 alpha = 3/2 + 2 = 7/2`

So `alpha = 7/4`

Since `(alpha + beta) = 3/2` then `beta = 3/2 - alpha`, giving us `beta = -1/4`.

We substitute these values into the expression `x^2 - (alpha+beta)x + alpha beta = 0` giving:

`x^2 - (3/2)x + (7/4)(-1/4) = 0`

`x^2 -3/2 x -7/16=0`

So the required quadratic equation is:

`x^2 -3/2 x -7/16 = 0`

We multiply throughout by `16` to tidy it up:

`16x^2 - 24x - 7 = 0`

Let's now go on to learn how the graph of a quadratic function is a parabola: 4. The Graph of the Quadratic Function


Problem Solver

Need help solving a different Algebra problem? Try the Problem Solver.


Disclaimer: IntMath.com does not guarantee the accuracy of results. Problem Solver provided by Mathway.

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.