Skip to main content
Search IntMath
Close

IntMath forum | Complex Numbers

All numbers from the sum of complex numbers? [Solved!]

My question

Is it true, that all numbers can be made, as the sum of complex numbers, but only the ones with the argument of 45^"o" 135^"o" and 270^"o"?

Relevant page

Diszkrét matematika | Digital Textbook Library

What I've done so far

.

X

Is it true, that all numbers can be made, as the sum of complex numbers, but only the ones with the argument of 45^"o" 135^"o" and 270^"o"?
Relevant page

<a href="https://www.tankonyvtar.hu/en/tartalom/tamop412A/2011-0038_25_juhasz_diszkret_matematika/ch02s03.html">
            
            
                Diszkr&#233;t matematika | 
            
            Digital Textbook Library
        </a>

What I've done so far

.

Re: All numbers from the sum of complex numbers?

@BuBu: You haven't indicated any working so that I can get a sense of where you are having trouble.

To start, are you able to form the 11 integers `-5,-4,...4,5` as the sum of complex numbers, but only the ones with the argument of 45^"o" 135^"o" and 270^"o"?

X

@BuBu: You haven't indicated any working so that I can get a sense of where you are having trouble.

To start, are you able to form the 11 integers `-5,-4,...4,5` as the sum of complex numbers, but only the ones with the argument of 45^"o" 135^"o" and 270^"o"?

Re: All numbers from the sum of complex numbers?

I'll try.

The `45^"o"` ones will be like `1+i`.

The `135^"o"` ones will be like `-1+j`.

The `270^"o"` ones will be like `-j`

So we can form:

`-5 = 5*((-1+j) + (-j))`

`-4 =4*((-1+j) + (-j))`

`-3 = 3*((-1+j) + (-j))`

`-2 = 2*((-1+j) + (-j))`

`-1 = (-1+j) + (-j)`

`0 = (-1+j)+(1+j)+(-j)+(-j)`

`1 = (1+j) + (-j)`

`2 = 2*((1+j) + (-j))`

`3 = 3*((1+j) + (-j))`

`4 = 4*((1+j) + (-j))`

`5 = 5*((1+j) + (-j))`

So it works for the integers `-5,-4,-3,...5.`

We could do similar things with the decimals, so I'm inclined to think this would be possible for all real numbers.

X

I'll try.

The `45^"o"` ones will be like `1+i`.

The `135^"o"` ones will be like `-1+j`.

The `270^"o"` ones will be like `-j`

So we can form:

`-5 = 5*((-1+j) + (-j))`

`-4 =4*((-1+j) + (-j))`

`-3 = 3*((-1+j) + (-j))`

`-2 = 2*((-1+j) + (-j))`

`-1 = (-1+j) + (-j)`

`0 = (-1+j)+(1+j)+(-j)+(-j)`

`1 = (1+j) + (-j)`

`2 = 2*((1+j) + (-j))`

`3 = 3*((1+j) + (-j))`

`4 = 4*((1+j) + (-j))`

`5 = 5*((1+j) + (-j))`

So it works for the integers `-5,-4,-3,...5.`

We could do similar things with the decimals, so I'm inclined to think this would be possible for all real numbers.

Re: All numbers from the sum of complex numbers?

Looks good to me. So yes, as long as we are talking about the reals, I think the claim is reasonable.

X

Looks good to me. So yes, as long as we are talking about the reals, I think the claim is reasonable.

Re: All numbers from the sum of complex numbers?

I encountered this problem again. It's good that it was solved here.

X

I encountered this problem again. It's good that it was solved here.

Reply

You need to be logged in to reply.

Related Complex Numbers questions

  • INTEGRATION [Solved!]
    Must the differential be included ALWAYS in the integrand? If so, then why?
  • square root of a complex number [Solved!]
    I cant get a formula for the square root of a + bi to work.
  • Complex conjugates [Solved!]
    In section 2 the part on dividing complex numbers, it is written that the numerator...
  • square roots! [Solved!]
    Hello Murray, I wanted to ask you a strange question that I found it little weird.....
  • Index problem [Solved!]
    What is the difference between (-1)^2/2 and ((-1)^2)^1/2?

Complex Numbers lessons on IntMath

top

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.